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Abstract. Invariant distance on the non-commutativeC∗-algebraC(SUq(2)) is constructed
and the generalized functions on theq-symmetric spaceM = SUq(2)/U(1) are introduced.
The Green function and the kernel onM are derived. A path integration is formulated. The
Green function for the free massive scalar field on the non-commutative Einstein spaceR1×M
is presented.

1. Introduction

How the quantum mechanical effects should be altered if we replace the spacetime
continuum with a non-commutative geometry is an exciting question. To answer this
question we have to formulate the known quantum mechanical problems over non-
commutative spaces. Since we lack satisfactory mathematical tools, construction of the
Schr̈odinger equations over non-commutative spaces is difficult and sometimes arbitrary
[1]. First, when we do not have a differentiable manifold it is problematic to find the
correct operators replacing the derivatives. If, however, non-commutative geometry is
given as a quantum group space this problem may be solved in a natural way since using
the action ofq-algebra generators one is not required to deal withq-differential calculus.
If this is not the case, since it is always possible to build up an integration theory on a
given set, the path integrals may, in principle, be a suitable method of quantization for non-
commutative geometries in general. Therefore, the derivation of the Green functions over
the non-commutative spaces is of interest. We should also remember that in usual quantum
physics, defined over commutative spaces, the Green functions which are the vacuum (or
temperature), expectation values of two-point field operators play an important role [2].
Even forq-group spaces the construction of the Green functions seems to be an important
step in the formulation of manyq-deformed quantum mechanical problems.

The experience we have in the derivation of Green functions over (undeformed)
homogeneous spaces is quite rich; and it is also well known that many non-relativistic
quantum mechanical problems are related to particle motion over these manifolds [3].
Therefore, we hope that by constructing the Green functions on theq-group spaces this
may lead to meaningful definitions of these problems over non-commutative geometries.
It is important to stress that if we know the formulations of the non-relativistic potential
problems we also gain insight into some field theoretical effects. In fact, the calculations
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of many field theoretical problems, like the pair creations in given cosmologies or in
external electromagnetic fields, and Casimir interactions, may formally become equivalent
to some non-relativistic potential problems. For example, to investigate pair production in
the Robertson–Walker spacetime expanding with the factora(t) one has to calculate the
Green function of a particle moving in the one-dimensional potentialV (t) = a−2(t) with
the timet playing the role of coordinate [4].

Motivated by the considerations summarized above, construction of the Green functions
over quantum homogeneous spaces is the subject of this work. The specific example we
study is the quantum symmetric spaceM = SUq(2)/U(1). Quantum symmetric spaces
have already been the subject of some interesting investigations. For example, the well
known relations between special functions and classical groups have been generalized to
quantum groups [5]. Studies related to the quantum spheres already exist in the literature
[6]. Schr̈odinger equations in connection with quantum group symmetry have also attracted
attention [7]. Recently the homogeneous space ofEq(2) has been considered and the
q-Schr̈odinger equation on it constructed [8].

In section 2, after a brief review of the invariant distance concept, we outline a method
for constructing the Green functions by two classical group examples. In this method, which
is applicable to the quantum groups, one first constructs the one-point ‘Green function’, then
obtains the Green function depending on two points by the group action.

In section 3 the invariant distance for the quantum groupA = Pol(SUq(2)) and the
q-symmetric spaceM = SUq(2)/U(1) is constructed and its properties are demonstrated.

In the derivation of the Green function we have to construct the class of generalized
functions on theq-symmetric spaceM. Section 4 is devoted to this construction.

In section 5 the one-point ‘Green function’ is derived on the spaceM, from which we
obtain the Green function in section 6.

In section 7 we introduce the time development kernel on the spaceM. Having this
kernel in hand the non-commutative path integration is also formulated.

Finally, in section 8 the Green function for the massive scalar field onR1×M, which
is the non-commutative version of the Einstein space, is constructed.

The basic definitions and the established results about the Hopf algebraA which we
use in our work are given in the appendices.

2. Method for constructing Green functions. Examples from classical Lie groups

The Green function of the free particle motion over a Lie group manifold and its
homogeneous spaces depend on the invariant distance between two points. When we attempt
to construct Green functions over the quantum homogeneous spaces the first problem we
have to face is the introduction of the invariant distance. To overcome this problem it
is instructive to review the case of classical Lie groups for the purpose of developing a
method for constructing Green functions which can also be employed for quantum groups.
We briefly study two examples.

We first consider the real lineR which is the homogeneous space with respect to the
translation groupT (x). The Green function of the free particle motion overR depends on
the invariant distance|x − x ′| and on the momentump ∈ (−∞,∞) which is the weight of
the fundamental unitary irreducible representation. The homogeneity ofR under the action
of T (x) implies

Gp(x, x ′) = T −1(x ′)Gp(x, 0). (2.1)

This equation suggests that the invariant Green function on the homogeneous space can be
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obtained by group action if the one-point ‘Green function’Gp(x, 0) is known.
As the second example we consider the classical symmetric spaceSU(2)/U(1). If an

elementg ∈ SU(2) is parametrized asg = k(ψ)a(θ)k(ψ ′) with

k(ψ) =
(

eiψ/2 0
0 e−iψ/2

)
a(θ) =

(
cosθ/2 i sinθ/2
i sinθ/2 cosθ/2

)
(2.2)

the symmetric spaceM which is topologically equivalent toS2 is represented as

x = gσ(g−1) x ∈ M. (2.3)

Hereσ is the involutive automorphism having the property

σ(k) = k σ(a) = a−1. (2.4)

The Green functionG on M depends on the group invariants which are the weights of
the fundamental unitary irreducible representationsl = 0, 1, 2, . . . , and on the invariant
distance given by

ρ(x1, x2) = 1− 1
2 Tr(x1x

−1
2 ) (2.5)

with x1, x2 ∈ M. Since the point of the symmetric space is given by the two-by-two
matrix (2.3), the symbolx−1 means the inversion of the matrixx. Using the group property
g−1

2 g1 = g12 we can write

Tr(x1x
−1
2 ) = Tr(g1σ(g

−1
1 )(g2σ(g

−1
2 ))−1) = Tr(g−1

2 g1σ((g
−1
2 g1)

−1))

= Tr(g12σ(g
−1
12 )) = Tr(x12). (2.6)

If we fix one of the points asx1 =
(

1 0
0 1

)
, we obtain a formula depending on only one

point. Taking advantage of this formula we can first construct a one-point ‘Green function’,
then by the action of the group element we arrive at the Green function which is dependent
on two points. The equation satisfied by the one-point ‘Green function’ is

(Ĉ − (l + 1
2)

2)G l(x) = δ(x) (2.7)

whereĈ is the Casimir element. Once we obtain the solution of this equation we can derive
the Green function simply by the group action as

G l(x1, x2) = T (g−1
2 )G l(x1) = G l(g2x1σ(g

−1
2 )) (2.8)

which satisfies

(Ĉ − (l + 1
2)

2)G l(x1, x2) = δ(x1− x2). (2.9)

3. An invariant distance on the quantum groupSUq(2)

The coordinate functionsa, a∗, b andb∗ of the Hopf∗-algebraA (see appendix A) satisfy
the commutation relations [9]

b∗b = bb∗ ba = qab b∗a = qab∗ aa∗ + b∗b = 1 a∗a + q2bb∗ = 1.

(3.1)

Any ∗-representation of theC∗-algebraC(SUq(2)) which is the suitable completion of the
algebra of polynomials onSUq(2) [10] is either one-dimensional or unitary equivalent to
the following representation written forq < 1

πφ(a)|n〉 = (1− q2n)
1
2 |n− 1〉 πφ(b)|n〉 = eiφqn|n〉 πφ(b

∗)|n〉 = e−iφqn|n〉
πφ(a

∗)|n〉 = (1− q2n+2)
1
2 |n+ 1〉 (3.2)
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which is irreducible for fixedφ ∈ (0, 2π ] [11]. Since the representation (3.2) exhaust all
the non-equivalent irreducible∗-representations of theC∗-algebraC(SUq(2)) we will omit
πφ in the formulae of the next sections.

In the q → 1 limit the relations (3.1) define the three-dimensional space which is the
manifold of SU(2). To understand the situation in the deformed case we recall the usual
quantum mechanics in which the physical systems are defined by vectors in the Hilbert
space and the self-adjoint operators correspond to the observables including coordinates.
In the same manner for quantum groups we construct self-adjoint operatorsX from linear
combinations of coordinate functions and define the expectation values of these operators
as the points of the quantum group space as

Xψ = 〈ψ |X|ψ〉 X ∈ A,ψ ∈ H (3.3)

where the Hilbert spaceH is the carrier space of the representation (3.2). This definition
can be carried to co-product spaceX ⊗ Y with X, Y ∈ A to define the invariant distance
for A which should go to the corresponding classical limit asq → 1 and should have the
following properties

ρ(g1, g2) = ρ(g2, g1) (3.4)

ρ(g1g, g2g) = ρ(g2, g1) (3.5)

ρ(g1, g2) > 0 (3.6)

ρ(g, g) = 0 (3.7)

ρ(g1, g2) < ρ(g1, g3)+ ρ(g3, g2). (3.8)

Motivated by formula (2.5) of the previous section we suggest the following Hermitian
operator inH⊗H

R = (τ ⊗ S)1
(

1− 1

[2]q
Trq(d

1
2 )

)
. (3.9)

Here d
1
2 is the matrix of the unitary irreducible co-representation of the Hopf algebraA

with weight 1
2 (see appendix A). [·]q is defined as [x]q = (qx − q−x)/(q − q−1) and the

q-trace is given by

Trq(d
1
2 ) =

1
2∑

j=− 1
2

q−2j (d
1
2
jj ). (3.10)

τ is the automorphism ofA defined as

τ(d
1
2 ) =

(
q−1a b

−qb∗ qa∗

)
. (3.11)

Note that in theq → 1 limit the invariant distance (3.9) reduces to the ordinary invariant
distance (2.5). Expectation values of the operatorR of (3.9) in the Hilbert spaceH ⊗H
defines the correct invariant distance onSUq(2). In fact, this operator possesses all the
properties of (3.4–3.8).

(i) The symmetry condition of (3.4) is fulfilled for

σ(R) = R. (3.12)

Hereσ is the flip homomorphismσ(x ⊗ y) = y ⊗ x; x, y ∈ A.
(ii) The invariance condition of (3.5) takes the form of

〈1⊗1R〉4 = R (3.13)
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where〈·〉4 is the map fromA⊗ A⊗ A⊗ A into A⊗ A and is given by

〈a ⊗ b ⊗ c ⊗ d〉4 = (a ⊗ c)ψ(bτ−1(d)) (3.14)

with ψ being the invariant integral on the quantum groupA (see appendix B).
(iii) The operatorR is positive. To show this we have to construct the basis in the

Hilbert spaceH⊗H in which it is diagonal. We choose the eigenfunctions as

ψl =
l∑

j=−l
vlj |l + j〉 ⊗ |l − j〉. (3.15)

We then sandwich the operatorR of (3.9) between these states to get the recurrence relations
for the unknown coefficientsvlj

[2]qv
l
j

(
1− 2q2l+1

[2]q
− El

)
= vlj−1[l + j ][ l − j + 1]+ vlj+1[l − j ][ l + j + 1]. (3.16)

These coefficients are normalized as
l∑

j=−l
vlj v

l
j = 1. (3.17)

El in (3.16) is the spectrum of the self-adjoint operatorR and [x] is defined as [x] =
(1− q2x)1/2. As an example, consider the eigenvalue and eigenfunction for thel = 0 state

ψ0 = |0〉 ⊗ |0〉. (3.18)

The corresponding eigenvalue

E0 = q−1− q
q−1+ q (3.19)

is positive forq < 1. Similar demonstrations can be done for all other values ofl to prove
thatEl is positive.

(iv) Condition of (3.7) is also satisfied for

m(τ−1⊗ id)R = 0 (3.20)

wherem is the operation of multiplication in theC∗-algebraC(SUq(2)) and τ−1 is the
inverse of the involution (3.11).

(v) Finally, the triangular inequality of (3.8) reads

〈9|(id⊗ σ)(R ⊗ 1)|9〉 < 〈9|(R ⊗ 1+ 1⊗ R)|9〉 |9〉 ∈ H⊗H⊗H. (3.21)

As in case (iii) we can show that the self-adjoint operator5 which is defined as

5 = R ⊗ 1+ 1⊗ R − (id⊗ σ)(R ⊗ 1) (3.22)

is positive. For example, for the eigenfunction

90 = |0〉 ⊗ |0〉 ⊗ |0〉 〈90 | 90〉 = 1 (3.23)

the corresponding eigenvalue which is given by

E0 = q−1− q
q−1+ q (3.24)

is positive forq < 1.
Before closing this section we give the invariant distance on the co-set spaceM = A/K

whereK = Pol(U(1)) (see appendix B). First, we introduce the involutive automorphism

β(d
1
2 ) =

(
a −b
qb∗ a∗

)
. (3.25)
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It is clear that it does not change the quantum subgroupK (see appendix A). By virtue of this
automorphism we introduce the coordinate functions on theq-symmetric spaceM = A/K
as

tij = (d 1
2β(S(d

1
2 )))ij . (3.26)

The operator of the invariant distance onM is then given by

RM = (τ ⊗ S)1
(

1− 1

[2]q
Trq(t)

)
. (3.27)

Introducing (3.26) into this formula we obtain

RM = (τ ⊗ S)1ξ (3.28)

where ξ = bb∗ ∈ A, which generates the two-sided co-set spaceH = K\A/K (see
appendix A). In a fashion parallel toR one can check thatRM satisfies all the properties of
the invariant distance.

4. Generalized functions on theq-symmetric spaceM

The Hopf∗-algebraA is the quantized algebra of polynomials onSUq(2). Since our aim
is the introduction of the Green function on theq-symmetric spaceM = SUq(2)/U(1)
this class of polynomials is not enough. We have to define generalized functions on these
non-commutative spaces. In this section we construct the class of generalized functions on
the quantum sphereM.

Matrix elements of the unitary co-representation ofA with weight l = 1 are the
coordinate functions which generate the algebra of functions over the quantum sphereM.
They are given by (see appendix B)

d1
0,1 = −qb∗a∗ ≡ z d1

0,−1 = ab ≡ q−1z∗ d1
0,0 = 1− (q−1+ q)ξ. (4.1)

The commutation relations satisfied are

zξ = q2ξz z∗ξ = q−2ξz∗ zz∗ − q4z∗z = (q2− 1)ξ. (4.2)

Using the∗-representation of theC∗-algebraC(SUq(2)) given by (3.2) we get

z∗|n〉 = eiψqn(1− q2n)
1
2 |n− 1〉 ξ |n〉 = q2n|n〉

z|n〉 = e−iψqn+1(1− q2n+2)
1
2 |n+ 1〉. (4.3)

Any elementp ∈ M can uniquely be represented as the finite sum as

p =
N∑
n>0

znpn(ξ)+
M∑
n>0

p−n(ξ)z∗n + p0(ξ) (4.4)

with pn(ξ) being the polynomials inξ . If in place of these polynomials we put functions
fn(ξ) with finite support such that supp(fn) ⊂ {q2, q4, q6, . . .} = q2Z+ we arrive at a vector
spaceF(M). One can supply the vector spaceF(M) with a topology in which the matrix
elements of the representation{〈n|p|m〉}n,m∈Z+ are continuous. It is then possible to arrive
at the space of generalized functionsF̂(M) which is the completion ofF(M).

The spaceF̂(M) contains the functions which can be represented as

f =
∑
n>0

znfn(ξ)+
∑
n>0

f−n(ξ)z∗n + f0(ξ) (4.5)

with supp(fn) ⊂ q2Z+ .
Repeating this procedure for the algebraM ⊗ M we obtain the space of generalized

functionsF̂(M ⊗M) on the tensor product of quantum spheres.
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5. One-point ‘Green function’

We will follow the method we introduced in section 2 for the construction of the Green
function overM. First, we have to obtain the one-point ‘Green function’G lq (ξ). It is defined
by the deformation of (2.7) as

(Ĉ − [l + 1
2]2
q)G lq (ξ) = δq(ξ) (5.1)

where Ĉ is the Casimir element (see appendix C). The invariantq-delta functionδq(ξ) is
a linear functional over the two-sided co-set spaceH which for any functionf ∈ A[0, 0]
satisfies

〈δq(ξ) | f (ξ)〉 = f (0) f ∈ A[0, 0] (5.2)

where the scalar product is the one given in appendix B. It is easy to verify that theq-delta
function can be represented as

δq(ξ) =
∞∑
l=0

[l + 1
2]qd

l
0,0(ξ) (5.3)

wheredl00(ξ) is theq-zonal function (see appendix B)

dl00(ξ) = 2φ1(q
−2l , q2(l+1), q2 | q2, q2ξ). (5.4)

We can also verify by direct substitution that the one-point ‘Green function’ of (5.1) can be
represented as

G lq (ξ) =
∞∑
n=0

[
n+ 1

2

]
q

dn0,0(ξ)

[n+ 1
2]2
q − [l + 1

2]2
q

. (5.5)

The above summation can be executed to give an expression in terms of theq-
hypergeometric function

G lq (ξ) = γ lξ−l−1
2φ1(q

−2(l+1), q−2(l+1), q−4(l+1) | q−2, q−2ξ−1) (5.6)

whereγ l is the normalization constant

γ l = q−2l−10q−2(l + 1)2

0q−2(2l + 2)
(5.7)

and where0 is theq-gamma function

0q(ν) = (1− q)1−ν (q; q)∞
(qν, q)∞

. (5.8)

The inverse of the elementξ can be represented as an infinite series which is the generalized
function given by

ξ−1 =
∞∑
n=0

(1− ξ)n. (5.9)

In theq → 1 limit the Green function (5.6) becomes a Legendre functionQl of the second
kind [12].
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6. Green function overM = A/K

Having the one-point Green function in hand we can now introduce the Green function
G lq (x ⊗ x) on theq-symmetric spacex ∈ M = A/K as

G lq (x ⊗ x) = (τ ⊗ S)1G lq (ξ) (6.1)

whereG lq (x ⊗ x) ∈ F̂(M ⊗M). The equation satisfied by this Green function is

(id⊗ {Ĉ − [l + 1
2]2
q})G lq (x ⊗ x) = δq(x ⊗ x) (6.2)

where the invariantq-delta function is given by

δq(x ⊗ x) = (τ ⊗ S)1δq(ξ). (6.3)

Note thatG lq (ξ) is actually in the subspacêF(H) ⊂ F̂(M). Thus, we can apply co-
multiplication onG lq (ξ) without any problem [13].

Substituting (5.3) into (6.3) and (5.5) into (6.1) we obtain the following representations
for the invariantq-delta function and the Green function

δq(x ⊗ x) =
∞∑
l=0

l∑
j=−l

[
l + 1

2

]
q

τ (dl0,j (x))⊗ dl0,j (x) (6.4)

G lq (x ⊗ x) =
∞∑
n=0

n∑
j=−n

[
n+ 1

2

]
q

τ (dn0,j (x))⊗ dn0,j (x)[
l + 1

2

]2

q
− [n+ 1

2

]2

q

. (6.5)

Using the representation (5.6) of the one-point ‘Green function’ we have another expression
for G lq (x ⊗ x) in terms of theq-hypergeometric function as

G lq (x ⊗ x) = γ l(τ ⊗ S)1(ξ−l−1
2φ1(q

−2(l+1), q−2(l+1), q−4(l+1) | q−2, q−2ξ−1)). (6.6)

For any operator functionf (x), x ∈ M and the linear operatorP of the dual Hopf∗-algebra
U(suq(2)) (see appendix C) theq-delta function of (6.4) satisfies

〈δq(x ⊗ x) | id⊗ f (x)〉2 = f (x) (6.7)

and

〈(P̂ ⊗ id)δq(x ⊗ x) | id⊗ f (x)〉2 = 〈δq(x ⊗ x) | id⊗ P̂ ∗f (x)〉2 (6.8)

whereP̂ is representative ofP in M and〈·|·〉2 is the inner product defined as

〈x1⊗ x2 | y1⊗ y2〉2 = x1y1ψ(x2τ
−1(y2)) x1, x2, y1, y2 ∈ M (6.9)

which is a map

(M ⊗M)× (M ⊗M)→ M. (6.10)

Before closing this section we would like to consider the inhomogeneous equation for a
given constantE and operator functionf (x) ∈ M

(Ĉ − E)F(x) = f (x). (6.11)

As in the classical case the solution is obtained by using the Green functionGEq
F(x) = F0(x)+ 〈GEq (x ⊗ x) | f (x)⊗ id〉2 (6.12)

whereF0(x) is the complete solution of the homogeneous equation. It is obvious from the
notation thatGEq is the solution of the same equation as (6.2) with [l + 1

2)]
2 replaced byE.
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7. Kernel on the q-symmetric spaceM

We introduce the unitary operator in terms of the real time intervalt and the centre of the
enveloping algebrâC as

U(t) = eit Ĉ (7.1)

satisfying the semigroup property

U(t)U(t ′) = U(t + t ′). (7.2)

The one-point ‘q-kernel’ is then given by

Kq(ξ, t) = U(t)δq(ξ). (7.3)

Inserting the representation of the one-pointq-delta function from (5.3) we obtain

Kq(ξ, t) =
∞∑
l=0

[
l + 1

2

]
q

eit[l+ 1
2 ]2

q dl00(ξ) (7.4)

which is connected to the one-point ‘Green function’ through the relation

Kq(ξ, t) =
∫ ∞
−∞

dE eitEGEq (ξ). (7.5)

It is obvious that the above kernel satisfies the equation

(i∂t + Ĉ)Kq(ξ, t) = 0. (7.6)

The two-pointq-kernel is defined in a manner parallel to the definition of the one-point
‘q-kernel’ as

Kq(x ⊗ x, t) = (U(t)⊗ id)δq(x ⊗ x). (7.7)

Inserting the representation of the two-pointq-delta function of (6.4) into the above equation
we have

Kq(x ⊗ x, t) =
∞∑
l=0

l∑
j=−l

eit[l+ 1
2 ]2

q

[
l + 1

2

]
q

τ (dl0,j (x))⊗ dl0,j (x). (7.8)

The triple invariant product〈· | ·〉3 is defined by

〈x1⊗ x2⊗ x3 | y1⊗ y2⊗ y3〉3 = x1y1⊗ x3y3φ(x2τ
−1(y2)) (7.9)

which is the map

(M ⊗M ⊗M)× (M ⊗M ⊗M)→ M ⊗M (7.10)

and enables us to derive the important property ofKq(x ⊗ x, t)
〈Kq(x ⊗ x, t)⊗ 1 | 1⊗Kq(x ⊗ x, t ′)〉3 = Kq(x ⊗ x, t + t ′). (7.11)

Using this property we can introduce the path integral representation for the kernel on
non-commutative space. Indeed from (7.11) it follows

Kq(x ⊗ x, T ) = 〈Kq(x ⊗ x, T /2)⊗ 1 | 1⊗Kq(x ⊗ x, T /2)〉3 (7.12)

and

Kq(x ⊗ x, T /2) = 〈Kq(x ⊗ x, T /4)⊗ 1 | 1⊗Kq(x ⊗ x, T /4)〉3. (7.13)

Inserting (7.13) into (7.12) and using the shorthand notationKq(T ) = Kq(x⊗ x, T ) we get

Kq(T ) = 〈〈Kq(T /4)⊗ 1 | 1⊗Kq(T /4)〉3⊗ 1 | 〈Kq(T /4)⊗ 1 | 1⊗Kq(T /4)〉3⊗ 1〉3.
(7.14)
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Continuing the above processn-times and taking the limitn → ∞ we arrive at a path
integral formula

Kq(x ⊗ x, T ) = lim
n→∞{(Kq(x ⊗ x, T /2

n)}n (7.15)

where{·}n stands forn-times repeated〈·〉3 map.

8. Green function for the massive free scalar field on theq-Einstein spaceR1×M

For the commutative translation group parametrized byt , the commutative and co-
commutative Hopf algebra of Fun(t) is given by

δt = 1⊗ t + t ⊗ 1 S(t) = −t ε(t) = 0. (8.1)

The one-point kernel for the free particle motion on(t, s) ‘spacetime’ is the usual one

K(t, s) = (−4iπs)−
1
2 e−t

2/4s . (8.2)

The kernel on(R1×M, s) is expressed as

K(ξ, t, s) = K(t, s)Kq(ξ, s) (8.3)

whereKq(ξ, s) is given by (7.4). Using the Schwinger–DeWitt representation

G(ξ, t;m2) = −iθ(t)
∫ ∞

0
e−im2sK(ξ, t, s)ds (8.4)

with Im(m2) < 0 andθ(t) being the step function we get the one-point ‘Green function’
overR1×M for the scalar field with massm. Performing integration over ds we obtain

G(ξ, t;m2) = θ(t)
∞∑
n=0

eit
√

[n+ 1
2 ]q+m2 [n+ 1

2]q√
[n+ 1

2]2
q +m2

dn00(ξ). (8.5)

The above Green function satisfies

(∂2
t − Ĉ +m2)G(ξ, t;m2) = δ(t)δq(ξ). (8.6)

Following the procedure of section 5 we obtain the invariant Green function on the space
R1×M depending on two points

G(y ⊗ y, ;m2) = (τ ⊗ S)1G(ξ, t;m2) (8.7)

wherey ∈ R1 ×M and the operations1 and τ on t are given by1t = δt and τ(t) = t .
The Green function (8.7) satisfies

(id⊗ (∂2
t − Ĉ +m2))G(y ⊗ y;m2) = δ(t ⊗ 1− 1⊗ t)δq(x ⊗ x). (8.8)
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Appendix A. Hopf algebra A = Pol(SUq(2)) [14]

The algebra of polynomialsA = Pol(SUq(2)) is the Hopf∗-algebra or real quantum group
SUq(2). The coordinate functionsπij are given by

πij (d
1
2 ) = πij

(
a b

−qb∗ a∗

)
= d

1
2
ij (A.1)

whered
1
2 is the matrix of the fundamental unitary irreducible co-representation of the Hopf

algebraA. The co-product1, antipodeS and co-unitε act as

1d
1
2
ij = d

1
2
ik ⊗ d

1
2
kj (A.2)

S(d
1
2 ) =

(
a∗ −qb
b∗ a

)
(A.3)

ε(d
1
2 ) =

(
1 0
0 1

)
. (A.4)

Appendix B. Harmonic analysis on the co-set spaceM = A/K [14]

B.1. The Cartan decomposition ofA

The quantum groupK = Pol(U(1)) is the Hopf algebra with coordinate functionst andt−1

1U(t
±) = t± ⊗ t± SU(t

±) = t∓ εU(t
±) = 1. (B.1)

The Hopf algebraK is the subgroup of the quantum groupA defined by the surjective Hopf
algebra homomorphism

ψk

(
a b

−qb∗ a∗

)
=
(
t 0
0 t−1

)
. (B.2)

The left and right unitary co-representation ofK in A is given by the homomorphisms

LK = (ψk ⊗ id) ◦1 RK = (id⊗ ψk) ◦1. (B.3)

The subspacesA[j, i]; j, i ∈ Z defined by

A[j, i] = {x ∈ A : LK(x) = t j ⊗ x RK(x) = x ⊗ t i} (B.4)

form the basis of the Hopf algebraA

A =
∑
j,i∈Z
⊕A[j, i]. (B.5)

The quantum co-set spaceM = A/K and two-sided co-set spaceH = K\A/K are the
subspaces ofA defined as

M =
∑
j,∈Z
⊕A[0, j ] H = A[0, 0]. (B.6)

The subspaceH is generated byξ = bb∗.
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B.2. Harmonic analysis onM

The irreducible co-representation ofA is constructed in the spaceM of homogeneous
polynomials of degreel

T : 1M = M ⊗ A. (B.7)

The basis inM is composed by the elements

elj = al+j bl−j . (B.8)

The matrix elements of the irreducible co-representation of the Hopf∗-algebra are given in
terms ofξ = bb∗ ∈ H andx ∈ M by

dl0j (x) = λlj 2φ1(q
2(j−l), q2(j+l+1), q2(j+1) | q2, q2ξ)(−qb∗)j (a∗)j j = 0, 1, . . . , l

(B.9)

and

dl0j (x) = λlj a−j b−j 2φ1(q
2(−j−l), q2(−j+l+1), q2(−j+1) | q2, q2ξ)

j = −l,−l + 1, . . . ,0. (B.10)

Here 2φ1 is theq-hypergeometric function andλlj is defined as

λlj = q |j |(|j |−l)
[
l

|j |
] 1

2

q2

[
l − |j |
|j |

] 1
2

q2

. (B.11)

The co-representation (B.7) is unitary with respect to the scalar product

〈x | y〉 = ψ(x∗y) x, y ∈ M (B.12)

whereψ is the invariant integral onA

ψ(z) =
∫ 1

0
dξq2 P(z) z ∈ A (B.13)

and P is the projection operatorP : A[i, j ] → A[0, 0]. With respect to the invariant
integral (B.13) the matrix elementsdl0j satisfy an orthogonality condition

〈dl0i (x) | dk0j (x)〉 = [l + 1
2]−1
q δij δlk. (B.14)

The matrix elements given in (B.9) and (B.10) form an orthogonal complete set of functions
overM. The Fourier transform of any square integrable functionf (x), x ∈ M is given by

f (x) =
∞∑
l=0

l∑
j=−l

[
l + 1

2

]
q

f lj d
l
0j (x) (B.15)

where the coefficientsf lj are

f lj = 〈dl0j | f 〉. (B.16)
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Appendix C. The Hopf algebraU (suq(2)) [14]

The Hopf∗-algebraU(suq(2)) is in non-degenerate duality withA. It is generated by the
elements

E±, k± = q±H/4 (C.1)

satisfying the commutation relations

[E+, E−] = k2
+ − k2

−
q − q−1

k+k− = k−k+ k+E+k− = qE+ (C.2)

and the involution

E∗± = E∓ H ∗ = H (C.3)

respectively. They are the linear functionals onA

E+(d
1
2 ) =

(
0 1
0 0

)
E−(d

1
2 ) =

(
0 0
1 0

)
k±(d

1
2 ) =

(
q±

1
2 0

0 q∓
1
2

)
. (C.4)

The extensions of the functionals (C.1) on the whole algebraA are given by

E±(xy) = E±(x)k+(y)+ k−(x)E±(y) k±(xy) = k±(x)k±(y) (C.5)

wherex, y ∈ A. By means of (C.4) and (C.5) we can define the representation ofU(suq(2))
from the co-representation (B.7) as

P̂ dl0,j (x) = P(dlk,j (g))dl0,k(x) (C.6)

whereP ∈ U(suq(2)). We then have

Ê±dl0j (x) = ([l + 1∓ j ]q [l ± j ]q)
1
2dl0,j∓1(x) (C.7)

k̂±dl0j (x) = q∓j dl0j (x). (C.8)

The element generating the centre of the Hopf algebraU(suq(2))

C = E−E+ +
(
qk− − q−1k+
q − q−1

)2

(C.9)

satisfies thee-value equation

(Ĉ − [l + 1
2]2
q)d

l
0j (x) = 0. (C.10)
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[1] Dayi Ö F and Duru I H 1995J. Phys. A: Math. Gen.28 2395
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